Table des matières

1	Les limites		2
	1.1	Adhérence	2
	1.2	Limites en un réel	2
		1.2.1 Limites infinies	2
		1.2.2 Limites finies	2
	1.3	Limites en l'infini	3
		1.3.1 Limites finies	3
		1.3.2 Limites infinies	3
	1.4	Limites à gauche ou à droite et continuité	4
	1.5	Existence d'une limite	4
2	Les	asymptotes	5
	2.1	Asymptote verticale	5
	2.2	Asymptote horizontale	5
	2.3	Asymptote oblique	6
	2.4	Rond creux	6
3	Le	calcul de limites	7
	3.1	Calculs immédiats	7
	3.2	Fonctions polynômes ou inverses de polynômes	7
	3.3	Fonctions rationnelles	8
4	Exe	ercices	9
	4.1	Les limites par graphique	9
		4.1.1 Solutions	9
	4.2	Les asymptotes	10
		4.2.1 Solutions	11
	4.3	Calcul de limites	11
		4.3.1 Solutions	12

1 Les limites

1.1 Adhérence

Un point adhérent au domaine de définition d'une fonction f est un point qui appartient au domaine de f ou qui est « juste à côté ».

Exemples:

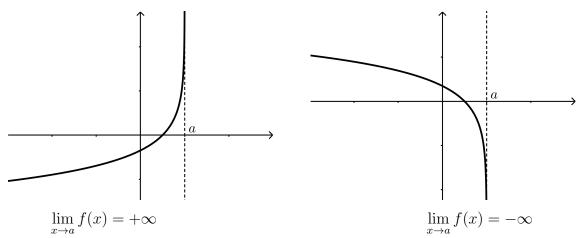
- 1. Si $dom_f =]0;1]$, les points de [0;1] sont adhérents au domaine.
- 2. Si $dom_f =]0; \rightarrow$, les réels positifs ou nuls sont adhérents au domaine.
- 3. Si $dom_f = \mathbb{R}_0$, tous les réels sont adhérents au domaine.

1.2 Limites en un réel

1.2.1 Limites infinies

Si a est un point adhérent au domaine de f,

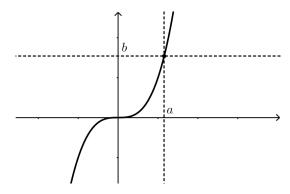
- 1. $\lim_{x\to a} f(x) = +\infty$ signifie que lorsque x s'approche de a, f(x) tend vers $+\infty$.
- 2. $\lim_{x\to a} f(x) = -\infty$ signifie que lorsque x s'approche de a, f(x) tend vers $-\infty$.



1.2.2 Limites finies

Si a est un point adhérent au domaine de f et si $b \in \mathbb{R}$,

1. $\lim_{x\to a} f(x) = b$ signifie que lorsque x s'approche de a, f(x) s'approche d'une valeur finie b.

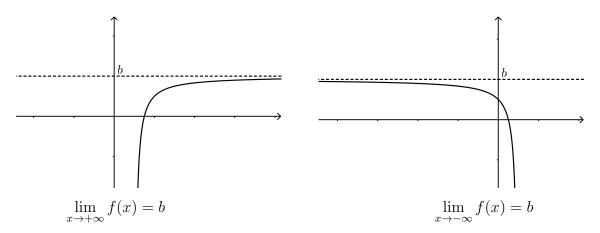


1.3 Limites en l'infini

1.3.1 Limites finies

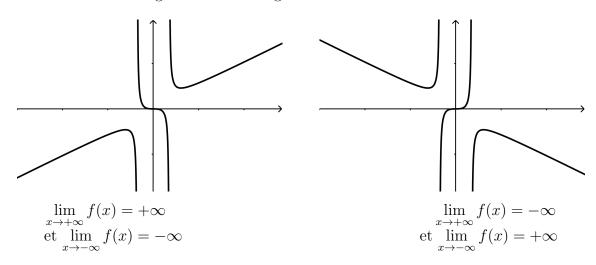
Si $b \in \mathbb{R}$,

- 1. $\lim_{x \to +\infty} f(x) = b$ signifie que lorsque x est infiniment grand, f(x) s'approche d'une valeur finie b.
- 2. $\lim_{x\to -\infty} f(x) = b$ signifie que lorsque x est infiniment grand dans les négatifs, f(x) s'approche d'une valeur finie b.



1.3.2 Limites infinies

- 1. $\lim_{x\to +\infty} f(x) = +\infty$ signifie que lorsque x est infiniment grand, f(x) devient infiniment grand aussi.
- 2. $\lim_{x\to +\infty} f(x) = -\infty$ signifie que lorsque x est infiniment grand, f(x) devient infiniment grand dans les négatifs.
- 3. $\lim_{x\to -\infty} f(x) = +\infty$ signifie que lorsque x est infiniment grand dans les négatifs, f(x) devient infiniment grand.
- 4. $\lim_{x \to -\infty} f(x) = -\infty$ signifie que lorsque x est infiniment grand dans les négatifs, f(x) devient infiniment grand dans les négatifs.

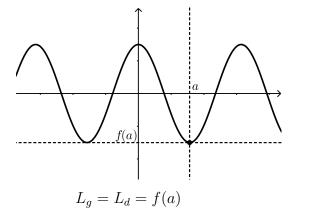


1.4 Limites à gauche ou à droite et continuité

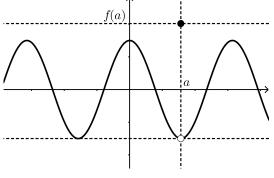
 $L_g = \lim_{x \to a^-} f(x)$ est la limite à gauche de f en a, c'est-à-dire la limite quand x s'approche de a par des valeurs plus **petites** que a.

 $L_d = \lim_{x \to a^+} f(x)$ est la limite à droite de f en a, c'est-à-dire la limite quand x s'approche de a par des valeurs plus **grandes** que a.

Une fonction f est continue en x = a si $L_g = L_d = f(a)$.



donc la fonction est continue en a.

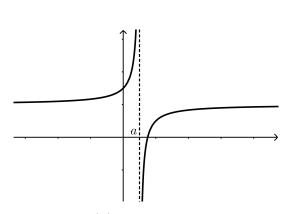


 $L_g = L_d \neq f(a)$

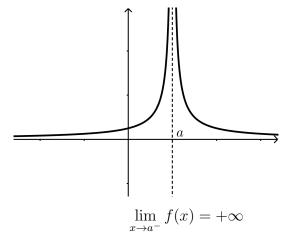
donc la fonction n'est pas continue en a.

1.5 Existence d'une limite

La $\lim_{x\to a} f(x)$ existe lorsque $L_g = L_d$. Elle vaut alors $L(=L_g \text{ ou } L_d)$.



$$\lim_{x \to a^{-}} f(x) = +\infty$$
 et $\lim_{x \to a^{+}} f(x) = -\infty$ donc la limite n'existe pas.

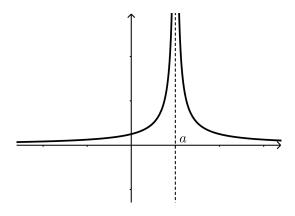


et $\lim_{x \to a^{-}} f(x) = +\infty$ donc la limite existe et vaut $+\infty$

2 Les asymptotes

2.1 Asymptote verticale

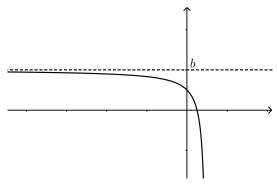
Le graphe d'une fonction f admet une **asymptote verticale** (AV) d'équation x = a si a est un point adhérent mais **hors du domaine** de f et si $\lim_{x\to a} f(x) = \pm \infty$.



2.2 Asymptote horizontale

Le graphe d'une fonction f admet une **asymptote horizontale** (AH) d'équation y=b lorsque $\lim_{x\to\pm\infty}f(x)=b$.

Si c'est le cas quand $x \to +\infty$, on parlera d'AH à droite. Si c'est le cas quand $x \to -\infty$, on parlera d'AH à gauche.



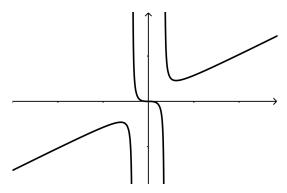
AH à gauche

2.3 Asymptote oblique

Le graphe d'une fonction f admet une **asymptote oblique** (AO) d'équation y = mx + p lorsque $\lim_{x \to \pm \infty} [f(x) - (mx + p)] = 0$.

À nouveau, on peut distinguer les AO à droite et à gauche.

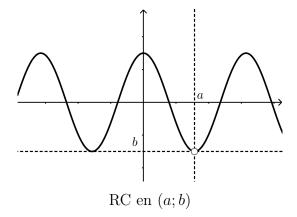
En pratique,
$$\begin{cases} m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \\ p = \lim_{x \to \pm \infty} f(x) - mx \end{cases}$$



AO à gauche et à droite

2.4 Rond creux

Le graphe d'une fonction f admet un **rond creux** (RC) en (a;b) si a est un point adhérent **mais hors du domaine** de f et si $\lim_{x\to a} f(x) = b$.



3 Le calcul de limites

Pour calculer $\lim_{x\to a} f(x)$, il suffit de remplacer x par a dans l'expression de f(x).

Parfois, tout marche bien et on tombe tout de suite sur un nombre réel; ce sont les limites **immédiates**. Parfois, on tombe sur une indétermination du type $\frac{0}{0}, \frac{+\infty}{-\infty}, +\infty - \infty, \dots$ Dans ces cas, il faut lever l'indétermination à l'aide des techniques ci-dessous.

3.1 Calculs immédiats

Exemples:

- $\bullet \lim_{x \to 3} 2x + 1 = 2.3 + 1 = 7$
- $\bullet \lim_{x \to +\infty} \frac{2}{x+1} = \frac{2}{+\infty} = 0$
- $\lim_{x \to -1} \sqrt{x}$ # car -1 n'est pas un point adhérent au domaine de $f(x) = \sqrt{x}$.

3.2 Fonctions polynômes ou inverses de polynômes

Pour soulever l'imprécision $\infty - \infty$, on ne s'intéresse qu'au terme de plus haute puissance.

Exemple:

$$\lim_{x \to -\infty} x^3 - 3x - 4 = -\infty + 3\infty - 4$$

$$= -\infty + \infty$$

$$= -\infty + \infty$$

$$= \lim_{x \to -\infty} x^3$$

$$= -\infty$$

Lorsque l'on obtient $\frac{b}{0}$, on se rappelle que diviser par un nombre infiniment petit donne un nombre infiniment grand. Ensuite, on fait un tableau de signe pour déterminer le signe du nombre infiniment grand.

Exemple:

$$\lim_{x \to -3} \frac{x^2 - x}{x + 3} = \frac{9 + 3}{-3 + 3}$$

$$= \frac{12}{0}$$

$$= \pm \infty$$

$$\begin{vmatrix} -3 & 0 & 1 \\ \frac{x^2 - x}{x + 3} & - // + 0 & -0 & + \end{vmatrix}$$

$$\begin{cases} \lim_{x \to -3^-} \frac{x^2 - x}{x + 3} & = -\infty \\ \lim_{x \to -3^+} \frac{x^2 - x}{x + 3} & = +\infty \end{cases}$$

3.3 Fonctions rationnelles

Pour soulever l'imprécision $\frac{0}{0}$, on factorise le numérateur et le dénominateur par x-a, on simplifie et on recalcule la limite.

Exemple:

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + x - 2} = \frac{1 - 1}{1 - 1 - 2}$$

$$= \frac{0}{0}$$

$$= ? \text{ indétermination?}$$

$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x + 2)}$$

$$= \lim_{x \to 1} \frac{x + 1}{x + 2}$$

$$= \frac{2}{3}$$

Pour soulever l'imprécision $\frac{\infty}{\infty}$, on ne s'intéresse qu'aux termes de plus hautes puissances, au numérateur et au dénominateur.

Exemple:

$$\lim_{x \to -\infty} \frac{2x^2 - x + 3}{x^3 + 8x + 7} = \frac{2\infty + \infty + 3}{-\infty - 8\infty + 7}$$

$$= \frac{\infty}{-\infty}$$

$$= ? indétermination?$$

$$= \lim_{x \to -\infty} \frac{2x^2}{x^3}$$

$$= \lim_{x \to -\infty} \frac{2}{x}$$

$$= 0$$

4 Exercices

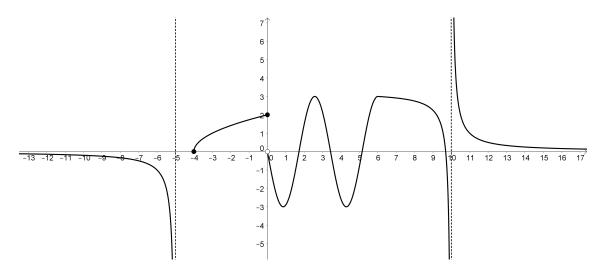
4.1 Les limites par graphique

1. Donnez les points adhérents mais hors du domaine des fonctions ci-dessous.

$$f_1(x) = \frac{x}{x^2 - 1}$$
 $f_2(x) = -\frac{2x + 1}{4x + 2}$ $f_3(x) = 2x + \frac{1}{3x}$.

2. Sur base du graphe ci-dessous, déterminez les limites suivantes.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to -5^{+}} f(x) = \lim_{x \to -5^{-}} f(x) = \lim_{x \to -5^{-}} f(x) = \lim_{x \to -4^{+}} f(x) = \lim_{x \to -2^{+}} f(x) = \lim_{x \to -2^{+}} f(x) = \lim_{x \to 10^{-}} f(x) = \lim_{x \to 10^{+}} f(x) = \lim_{x \to 10^{+}} f(x) = \lim_{x \to 17^{+}} f(x) = \lim_{x \to$$



3. À l'aide des limites, expliquez pourquoi la fonction ci-dessus n'est pas continue en 0.

9

4.1.1 Solutions

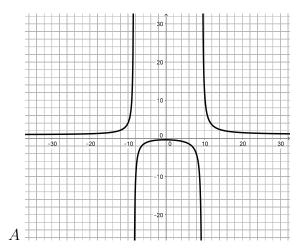
1. $f_1: \{-1; 1\}, f_2: \{-1/2\}, f_3: \{0\}$

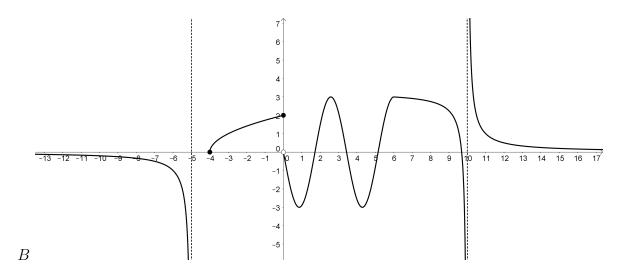
$$\begin{array}{c|ccccc} 0 & & 0 & & 3 \\ & \neq & & -\infty & & \neq \\ 2. & 0 & & environ 1,5 & & 0 \\ & & environ -0,75 & & 3 & & +\infty \\ & & -\infty & & environ 1 & & 0 \end{array}$$

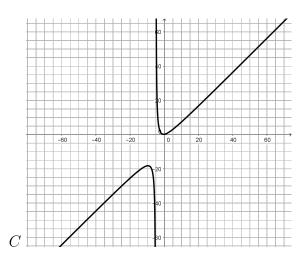
3. f(0) = 0 et $L_d = 0$ mais $L_g = 2$.

4.2 Les asymptotes

Pour chacun des graphes suivants, estimez les équations des asymptotes. Justifiez ces équations à l'aide des limites.







4.2.1 Solutions

$$A \quad AV \equiv x = -10 \text{ car } \lim_{x \to -10^-} f(x) = +\infty \text{ et } \lim_{x \to -10^+} f(x) = -\infty$$

$$AV \equiv x = 10 \text{ car } \lim_{x \to 10^-} f(x) = -\infty \text{ et } \lim_{x \to 10^+} f(x) = +\infty$$

$$AH \equiv y = 0 \text{ car } \lim_{x \to \pm \infty} f(x) = 0$$

$$B \quad AV \equiv x = 10 \text{ car } \lim_{x \to 10^-} f(x) = -\infty \text{ et } \lim_{x \to 10^+} f(x) = +\infty$$

$$AV \equiv x = -5 \text{ car } \lim_{x \to -5^-} f(x) = -\infty \text{ et } \lim_{x \to -5^+} f(x) \not\equiv$$

$$AH \equiv y = 0 \text{ car } \lim_{x \to \pm \infty} f(x) = 0$$

$$C \quad AV \equiv x = -5 \text{ car } \lim_{x \to -5^-} f(x) = -\infty \text{ et } \lim_{x \to -5^+} f(x) = +\infty$$

$$AO \equiv y = x - 5$$

4.3 Calcul de limites

1. Calculez les limites des fonctions ci-dessous.

(a)
$$\lim_{x \to -3} \frac{1}{x}$$

(b)
$$\lim_{x \to 0} \frac{3+x}{2x}$$

(c)
$$\lim_{x \to -5} \sqrt{x+4}$$

(d)
$$\lim_{x \to 2} \sqrt{2x - 1}$$

(e)
$$\lim_{x \to \infty} \frac{2}{x+1}$$

(f)
$$\lim_{x \to -\infty} \frac{2x+1}{x+3}$$

(g)
$$\lim_{x \to \infty} 8x^2$$

(h)
$$\lim_{x \to -\infty} \frac{x}{3}$$

(i)
$$\lim_{x \to \pm \infty} x^n$$
 pour n pair

(j)
$$\lim_{x \to \pm \infty} x^n$$
 pour n impair

(k)
$$\lim_{x \to \pm \infty} \frac{1}{x^n}$$

(1)
$$\lim_{x \to 1} x^3 + 3x - 4$$

$$(\mathrm{m}) \lim_{x \to +\infty} x^3 + 3x - 4$$

(n)
$$\lim_{x \to -\infty} x^3 + 3x - 4$$

(o)
$$\lim_{x \to -\infty} x^3 - 3x - 4$$

(p)
$$\lim_{x \to -1} \frac{1}{x^2 - 3x + 2}$$

(q)
$$\lim_{x \to 1} \frac{1}{x^2 - 3x + 2}$$

(r)
$$\lim_{x \to 2} \frac{1}{x^2 - 3x + 2}$$

(s)
$$\lim_{x \to -2} \frac{1}{x^2 - 3x + 2}$$

(t)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 3x + 2}$$

(u)
$$\lim_{x \to 1} \frac{3x^2 - x - 2}{3x^2 - 6x + 3}$$

(v)
$$\lim_{x \to \pm \infty} \frac{x^2 - 5x + 1}{3x + 7}$$

(w)
$$\lim_{x \to \pm \infty} \frac{2x^2 - x + 3}{x^3 - 8x + 7}$$

(x)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x^2 - 2x - 3}$$

(y)
$$\lim_{x \to +\infty} \frac{x^2 - x - 6}{x^2 - 2x - 3}$$

(z)
$$\lim_{x \to +\infty} \frac{1}{x^2 - x}$$

2. Calculez les limites suivantes. Quand elles donnent lieu à une asymptote verticale, une asymptote horizontale ou un rond creux, précise-le.

(a)
$$\lim_{x \to \pm \infty} \frac{x^2 - 2}{x + 1}$$

(b)
$$\lim_{x \to \pm \infty} \frac{(x^3 - 1)(x + 2)}{1 - x^2}$$

(c)
$$\lim_{x \to 1} \frac{(x^3 - 1)(x + 2)}{1 - x^2}$$

(d)
$$\lim_{x \to -1} \frac{(x^3 - 1)(x + 2)}{1 - x^2}$$

(e)
$$\lim_{x \to \pm \infty} \frac{4x^2 - 5x + 7}{8x^2 - 6x + 1}$$

(f)
$$\lim_{x \to \pm \infty} \frac{-(x+3)^2}{8x^2 + 2x + 5}$$

- 3. Pour chacune des fonctions ci-dessous,
 - déterminez le domaine de définition,
 - déterminez les équations des éventuelles asymptotes.

(a)
$$f(x) = \frac{3x}{x^2 - 1}$$

(b)
$$f(x) = \frac{x^2 - x - 6}{x^3 + 3x^2 - 4}$$

(c)
$$f(x) = \frac{2x^2 - 3x + 1}{x - 2}$$

Solutions 4.3.1

- 1. (a) $\frac{-1}{3}$
 - (b) $-\infty$ à gauche, $+\infty$ à droite
 - (c) ∄
 - (d) $\sqrt{3}$
 - (e) 0
 - (f) 2
 - $(g) +\infty$
 - (h) $-\infty$
 - (i) $+\infty$
 - (j) $-\infty$ à gauche, $+\infty$ à droite
 - (k) 0
 - (1) 0
 - $(m) + \infty$
 - (n) $-\infty$
 - (o) $-\infty$
 - (p) $\frac{1}{6}$
 - (q) $+\infty$ à gauche, $-\infty$ à droite
 - (r) $-\infty$ à gauche, $+\infty$ à droite
 - (s) $\frac{1}{12}$
 - (t) 0
 - (u) $-\infty$ à gauche, $+\infty$ à droite
 - (v) $-\infty$ à gauche, $+\infty$ à droite
 - $(\mathbf{w}) 0$
 - $(x) \frac{5}{4}$
 - (y) 1
 - (z) 0
- 2. (a) $\lim_{x \to +\infty} \frac{x^2 2}{x + 1} = +\infty$ et $\lim_{x \to -\infty} \frac{x^2 2}{x + 1} = -\infty$
 - (b) $\lim_{x \to \pm \infty} \frac{(x^3 1)(x + 2)}{1 x^2} = -\infty$
 - (c) $\lim_{x \to 1} \frac{(x^3 1)(x + 2)}{1 x^2} = \frac{-9}{2}$ On a donc un rond creux en $(1, \frac{-9}{2})$.

(d)
$$\lim_{\substack{x \to -1^- \\ \text{On a donc une AV} \equiv x = -1}} \frac{(x^3 - 1)(x + 2)}{1 - x^2} = +\infty \text{ et } \lim_{\substack{x \to -1^+ \\ x \to -1^+ }} \frac{(x^3 - 1)(x + 2)}{1 - x^2} = -\infty$$

(e)
$$\lim_{x \to \pm \infty} \frac{4x^2 - 5x + 7}{8x^2 - 6x + 1} = \frac{1}{2}$$

On a donc une $AH_d \equiv y = \frac{1}{2}$ et une $AH_g \equiv y = \frac{1}{2}$.

$$\begin{array}{ll} \text{(f)} & \lim_{x\to\pm\infty}\frac{-(x+3)^2}{8x^2+2x+5}=\frac{-1}{8}\\ & \text{On a donc une AH}_d\equiv y=\frac{-1}{8} \text{ et une AH}_g\equiv y=\frac{-1}{8}. \end{array}$$

3. (a)
$$f(x) = \frac{3x}{x^2 - 1}$$

- AV $\equiv x = 1$, AV $\equiv x = -1$, AH $\equiv y = 0$ et pas d'AO

(b)
$$f(x) = \frac{x^2 - x - 6}{x^3 + 3x^2 - 4}$$

• $Dom_f = \mathbb{R} \setminus \{-2; 1\}$

- AV $\equiv x = -2$, AV $\equiv x = 1$, AH $\equiv y = 0$ et pas d'AO

(c)
$$f(x) = \frac{2x^2 - 3x + 1}{x - 2}$$
•
$$Dom_f = \mathbb{R} \setminus \{2\}$$

- AV $\equiv x = 2$, pas d'AH, AO $\equiv y = 2x + 1$